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Abstract
We consider state reconstruction from the measurement statistics of phase
space observables generated by photon number states. The results are obtained
by inverting certain infinite matrices. In particular, we obtain reconstruction
formulae, each of which involves only a single phase space observable.

PACS numbers: 03.65.−w, 03.67.−a, 42.50.−p

1. Introduction

A density operator of a quantum system is determined by any informationally complete set of
measurements performed on the system; this means that the state is uniquely specified by the
collective outcome statistics of such measurements (see, for instance, [7, 25]). However, this
point of view is rather abstract; in practical applications one instead aims to derive explicit
reconstruction formulae for the density operator in terms of the empirical distributions in
question. Of course, informational completeness of the measurements is necessary for the
existence of such reconstruction formulae. In quantum optics one typically uses the set
of rotated quadratures [11, 16, 19], which can easily be measured by homodyne detection
[17]. Another option is to use phase space observables. In particular, one can reconstruct
the density matrix from the collection of phase space observables generated by number
states [20, 28]. The associated distributions are sometimes called displaced photon number
distributions, and the entire collection is called photon number tomogram by Manko et al
[21, 22]. The use of displaced photon number distributions in quantum state reconstruction
has also been demonstrated experimentally [3]. The recent progress in the field of quantum
state reconstruction has been reviewed in [29].

The purpose of this paper is to use the method of infinite matrix inversion, as in [15],
to derive state reconstruction formulae involving the measurement outcome distributions of
phase space observables generated by the number states. We consider two different types of
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formulae, involving (1) the entire tomogram, and (2) only a single observable. We find one
formula of type (2) for each displaced photon number distribution; up to our knowledge, such
formulae have previously been obtained only for the observable generated by the vacuum
state.

The paper is organized as follows. In section 2 we fix the notations and consider the
informational completeness of phase space observables. The relevant results concerning the
inversion of infinite matrices are presented in section 3. Section 4 contains the main results of
this paper. After presenting the basic properties of the phase space observables generated by
the number states and discussing the possibility of measuring the observables, we prove two
reconstruction formulae.

2. Preliminaries

Let H be a complex separable Hilbert space and {|n〉|n ∈ N} be an orthonormal basis of H
where N := {0, 1, 2, . . .}. The basis is identified with the photon number basis, or Fock basis,
in the case where H is associated with the single-mode electromagnetic field. Let a and a∗

denote the usual raising and lowering operators associated with the above basis of H, and let
N = a∗a be the self-adjoint number operator. Now the phase shifting unitary operators are
R(θ) := eiθN . Define the shift operator of the complex plane D(z) = eza∗−za , z ∈ C, for
which the identities D(z)∗ = D(z)−1 = D(−z) and R(θ)D(z)R(θ)∗ = D(z eiθ ) hold. The
matrix elements of D(z) with respect to the number basis are

〈m|D(z)|n〉 = (−1)max{0,n−m} eiθ(m−n)

√
min{m, n}!
max{m, n}! e−r2/2r |m−n|L|m−n|

min{m,n}(r
2), (1)

where z = r eiθ and

Lα
s (x) :=

s∑
u=0

(−1)u

u!

(
s + α

s − u

)
xu

is the associated Laguerre polynomial.
Let L(H) be the set of bounded operators on H, and T (H) the set of trace class operators.

We let ‖ · ‖1 denote the trace norm of T (H) and the operator norm of L(H) is denoted by ‖ · ‖.
When H is associated with a quantum system, such as the single-mode electromagnetic field,
the states of the system are represented by positive operators ρ ∈ T (H) with the unit trace,
density operators, and each state is fully characterized by the matrix elements ρmn := 〈m|ρ|n〉
with respect to the given basis. The observables are associated with the normalized positive
operator measures (POMs) which, in the case of phase space observables, are defined on
the Borel σ -algebra B(C) of subsets of C ∼= R

2.3 The measurement outcome statistics of a
phase space observable E : B(R2) → L(H) in a state ρ are given by the probability measure
X 	→ tr[ρE(X)].

For each positive operator K of trace 1, define the phase space POM EK : B(C) → L(H)

by

EK(X) :=
∫

X

D(z)KD(z)∗
d2z

π
, (2)

where the integral exists in the σ -weak sense. This measure is covariant in the sense that

D(α)EK(X)D(α)∗ = EK(X + α),

3 A normalized positive operator measure, defined on a σ -algebra � of subsets of a set �, is a map E : � → L(H)

which is σ -additive in the weak operator topology, and has the property E(�) = I (the identity operator), that is, for
which X 	→ tr[ρE(X)] is a probability measure for each state ρ.
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for all X ∈ B(C) and α ∈ C. Furthermore, each covariant phase space observable is of the
above form [13, 30]. We use the notation GK for the operator density related to EK , that
is, GK : C → L(H), z 	→ GK(z) = D(z)KD(z)∗. For a fixed density operator ρ, the
phase space probability measure associated with EK , i.e. X 	→ tr[ρEK(X)], has a density
GK

ρ : C → [0,∞), given by

GK
ρ (z) = tr[ρD(z)KD(z)∗] = tr[ρGK(z)].

If K is a one-dimensional projection, that is K = |ψ〉〈ψ | for some ψ ∈ H, ‖ψ‖ = 1, we use
the notations Eψ := E|ψ〉〈ψ |, Gψ := G|ψ〉〈ψ | and Gψ

ρ := G|ψ〉〈ψ |
ρ , respectively.

When reconstructing the state of the system directly from some measurement data, the
measured observables are required to distinguish between any two states.

Definition 1. A set M of observables E : B(�) → L(H) is informationally complete, if any
two states ρ and ρ ′ are equal whenever tr[ρE(X)] = tr[ρ ′E(X)] for all E ∈ M and X ∈ B(�).

In other words, the informational completeness of a set M of observables means that
the totality of the corresponding measurement outcome distributions determines the state ρ

of the system. Clearly, a set M of observables is informationally complete if and only if
ρ = 0 whenever ρ is a self-adjoint trace class operator with tr[ρE(X)] = 0 for all E ∈ M
and X ∈ B(�). If M consists of a single observable E, we say that E is an informationally
complete observable. A covariant phase space observable EK is known to be informationally
complete if tr[KD(z)] �= 0 for almost all z ∈ C [2]. As a consequence of this, we obtain
the following lemma, which shows that EK is informationally complete whenever K is a finite
matrix. In particular, the observables generated by the number states are informationally
complete.

Lemma 1. Let K be a positive operator with unit trace, whose matrix representation with
respect to the number basis {|n〉 | n ∈ N} is finite. Then the covariant phase space observable
EK generated by K is informationally complete.

Proof. Since the matrix representation of K is finite, K can be written as a finite sum
K = ∑k

m,n=0 Kmn|m〉〈n|. Due to the linearity of the trace, we then have

tr[KD(z)] =
k∑

m,n=0

Kmn〈n|D(z)|m〉

for all z ∈ C. According to equation (1), we have 〈n|D(z)|m〉 = 0 exactly when

|z||m−n|L|m−n|
min{m,n}(|z|2) = 0,

which is a polynomial of |z| of order m+n. We thus find that 〈n|D(z)|m〉 = 0 for only a finite
number of points z ∈ C, which then implies that

tr[KD(z)] �= 0

for almost all z ∈ C. Hence, EK is informationally complete. �

Consider now an arbitrary covariant phase space observable EK . Let Pn be the projection
onto the n-dimensional subspaces spanned by the vectors |k〉, k = 0, 1, . . . , n − 1, that is
Pn = ∑n−1

k=0 |k〉〈k|. Since tr[K] = 1, there exists a smallest natural number n0 such that
tr[Pn0KPn0 ] �= 0. For each n � n0, define the truncated operator Kn = 1

tr[PnKPn]PnKPn,
where the normalization assures that it is a positive operator of unit trace. According to
lemma 1, each observable EKn is informationally complete. It is a well-known fact that the

3
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sequence (Kn)n∈N converges to K in the trace norm. For each state ρ and X ∈ B(C) we then
have

tr[ρEKn(X)] =
∫

X

tr[ρD(z)KnD(z)∗]
d2z

π
=

∫
X

tr[KnD(z)∗ρD(z)]
d2z

π

=
∫

−X

tr[KnD(z)ρD(z)∗]
d2z

π
= tr[KnEρ(−X)]

and similarly for K. This then implies that

|tr[ρEKn(X)] − tr[ρEK(X)]| = |tr[KnEρ(−X)] − tr[KEρ(−X)]|
� ‖Kn − K‖1‖Eρ(−X)‖ → 0,

as n → ∞. In this way, the measurement of EK is obtained as a limit of measurements of
informationally complete observables. In particular, the measurement of an informationally
incomplete observable can be obtained as such a limit.

3. Matrix inversion results

In this section we present the relevant results concerning the inversion of infinite matrices.
The proofs are given in the appendix. The first result shows that any infinite upper-triangular
matrix with nonzero diagonal elements has a formal inverse.

First of all, note that the product of two or more upper-triangular matrices is always
a well-defined upper-triangular matrix, in the sense that the matrix elements of the product
matrix are well-defined finite sums. To clarify this, consider the matrices A = (amn)m,n∈N

and B = (bmn)m,n∈N, for which amn = 0 = bmn for n < m. Now the matrix elements of the
product matrix are

(AB)m,m+l =
∞∑

k=0

am,kbk,m+l =
m+l∑
k=m

am,kbk,m+l

for all l ∈ N, and (AB)m,n = 0 for n < m. Similarly, any finite product of upper-triangular
matrices is well defined. If C is a strictly upper-triangular matrix, that is, the diagonal elements
are zeros, then for each m, l ∈ N we have (Ck)m,m+l = 0 when k > l. In this way, the infinite
series

∞∑
k=0

Ck

is well defined in the sense that( ∞∑
k=0

Ck

)
m,m+l

=
∞∑

k=0

(Ck)m,m+l =
l∑

k=0

(Ck)m,m+l ,

that is, the series reduces to a finite sum for each m, l ∈ N.
If A is an upper-triangular matrix with unit diagonal elements, then the matrix (I − A) is

strictly upper triangular. Thus, the series
∞∑

k=0

(I − A)k

is well defined in the above sense. The following lemma shows that such a series is actually
the formal inverse of A.
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Lemma 2. Let A = (amn)m,n∈N be an upper-triangular infinite matrix with unit diagonal,
that is, amn = 0 for n < m, and amm = 1 for all m ∈ N, and let B = (bmn)m,n∈N be a matrix
for which bmn = 0 for n < m and bm,m+l = ∑l

k=0[(I − A)k]m,m+l for all l ∈ N. Then A and
B are formal inverses of each other, that is (AB)mn = δmn = (BA)mn.

As an immediate consequence, we find the inverse of an upper-triangular matrix with
nonzero diagonal elements.

Corollary 1. Let A = (amn)m,n∈N be an upper-triangular matrix with nonzero diagonal
elements, and U = (umn)m,n∈N a diagonal matrix with umm = a−1

mm. Then A has a formal
inverse B = (bmn)m,n∈N such that bmn = 0 when n < m and

bm,m+l = 1

am+l,m+l

l∑
k=0

[(I − UA)k]m,m+l = 1

am,m

l∑
k=0

[(I − AU)k]m,m+l

for all m, l ∈ N.

Consider now a finite sequence (cn)
k
n=0 ⊂ C in the above case. Define the sequence

(dm)m∈N via

dm =
∞∑

n=0

amncn =
k∑

n=m

amncn.

Since dm = 0 for m > k, the sequence is actually finite. Define (c′
n)n∈N via

c′
n =

∞∑
m=0

bnmdm =
k∑

m=n

bnmdm.

Again, c′
n = 0 for n > k, and inserting dm into the above equation gives us for n � k

c′
n =

k∑
m=n

k∑
n′=m

bnmamn′cn′ =
k∑

m=0

k∑
n′=0

bnmamn′cn′ =
k∑

n′=0

(
k∑

m=0

bnmamn′

)
cn′ =

k∑
n′=0

δnn′c′
n = cn

since n′ � k. This then implies that when restricted to the vector space of finite sequences,
the linear mappings corresponding to the matrix and its formal inverse are inverse mappings
of each other.

The second lemma deals with a special case of an upper-triangular matrix, namely one
that is also an infinite-dimensional Toeplitz matrix. That is, for all l ∈ N, the lth diagonal
elements am,m+l , m ∈ N, do not depend on m. It turns out that the formal inverse (bmn)m,n∈N

is also an upper-triangular Toeplitz matrix. In this case we also find a sufficient condition for
inverting the relation

dm =
∞∑

n=0

amncn,

where (cn)n∈N is an infinite sequence, as

cn =
∞∑

m=0

bnmdm.

Lemma 3. Let l ∈ N, l � 1, a0, a1, . . . , al ∈ C, a0 �= 0, and define the matrix A = (asn)s,n∈N

for which asn = an−s , when s � n � s + l, and asn = 0 otherwise. Let B = (bns)n,s∈N be the
formal inverse of A.

5



J. Phys. A: Math. Theor. 43 (2010) 095303 J Kiukas et al

(a) There exists a unique sequence (bu)u∈N ⊂ C such that bns = bs−n when s � n.
(b) Let (cn)n∈N ⊂ C and define the sequence (ds)s∈N via ds = ∑∞

n=0 asncn. Suppose that for
a given n ∈ N, the condition limm→∞ ak−nbm−kcm = 0 is satisfied for k = n+1, . . . , n+ l.
Then

cn =
∞∑

s=0

bnsds.

4. Phase space observables generated by the number states

For each s ∈ N, let G|s〉 : [0,∞) × [0, 2π) → L(H) be the operator density associated
with the phase space observable generated by the number state |s〉〈s|, i.e. G|s〉(r, θ) =
D(r eiθ )|s〉〈s|D(r eiθ )∗. For any state ρ, let G|s〉

ρ (r, θ) := tr[ρG|s〉(r, θ)] be the corresponding
probability density4. The informational completeness of the corresponding observable

B(C) � Z 	→ E|s〉(Z) =
∫

Z

D(z)|s〉〈s|D(z)∗
d2z

π
∈ L(H)

follows directly from lemma 1, and thus the reconstruction of the state is, in principle, possible
from the measured distribution.

The matrix elements of the operator density G|s〉 with respect to the number basis are

〈n|G|s〉(r, θ)|m〉 = eiθ(n−m)f s
nm(r),

where

f s
nm(r) := 〈n|D(r)|s〉〈s|D(r)∗|m〉.

Thus, the probability density G|s〉
ρ (r, θ) = tr[ρG|s〉(r, θ)] can be written as

G|s〉
ρ (r, θ) =

∞∑
m,n=0

ρmn〈n|G|s〉(r, θ)|m〉 =
∞∑

m,n=0

ρmn eiθ(n−m)f s
nm(r).

Using equation (1), the explicit form of the functions f s
n,m can be written as

f s
nm(r) = (−1)max{0,s−n}+max{0,s−m}

√
min{n, s}! min{m, s}!
max{n, s}! max{m, s}!

× e−r2
r |s−n|+|s−m|L|s−n|

min{n,s}(r
2)L

|s−m|
min{m,s}(r

2). (3)

The mapping θ 	→ G|s〉(r, θ) is weakly continuous for each r ∈ [0,∞), and ‖G|s〉(r, θ)‖ =
1 for all r ∈ [0,∞), θ ∈ [0, 2π), so the operator

G
|s〉
l (r) := 1

2π

∫ 2π

0
eilθG|s〉(r, θ) dθ

is well defined as a weak integral. In addition, we have

G
|s〉
ρ,l(r) := tr[ρG

|s〉
l (r)] = 1

2π

∫ 2π

0
eilθG|s〉

ρ (r, θ) dθ,

for all states ρ. A simple calculation gives us

G
|s〉
ρ,l(r) =

∞∑
n=0

ρn+l,n〈n|D(r)|s〉〈s|D(r)∗|n + l〉,

for all r ∈ [0,∞).
4 The function (s, z) 	→ ω(s, z) := tr[ρG|s〉(z)] is also known as the photon number tomogram [21, 22], that is, the
tomogram is identified with the collection of probability densities G

|s〉
ρ , s ∈ N.

6
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The probability distributions G|s〉
ρ , also known as displaced photon distributions, are

closely related to the λ-parametrized phase space quasiprobability distributions, first presented
by Cahill and Glauber [8, 9]. To clarify this, let us recall the definition of these distributions.
For each λ ∈ C, |λ| < 1, define the operator density Wλ : [0,∞) × [0, 2π) → L(H) by

Wλ(r, θ) := (1 − λ)

∞∑
k=0

λkD(r eiθ )|k〉〈k|D(r eiθ )∗,

and the corresponding probability density Wλ
ρ by Wλ

ρ (r, θ) = tr[ρWλ(r, θ)]. It is clear from
these definitions that, indeed, one has

Wλ
ρ (r, θ) = (1 − λ)

∞∑
k=0

λkG|k〉
ρ (r, θ).

To obtain the displaced photon distributions from the λ-distribution, we first note that∣∣G|k〉
ρ (r, θ)

∣∣ = |〈k|D(r eiθ )∗ρD(r eiθ )|k〉| � ‖ρ‖ � ‖ρ‖1 = 1,

for all r ∈ [0,∞), θ ∈ [0, 2π), which follows from the Cauchy–Schwarz inequality. This
then implies that (1 − λ)−1Wλ

ρ (r, θ) = ∑∞
k=0 λkG|k〉

ρ (r, θ) is a power series with respect to λ,
converging absolutely for all λ ∈ C, |λ| < 1, implying that the series can be differentiated
around the origin term by term. A direct calculation now gives us

1

s!

∂s

∂λs
((1 − λ)−1Wλ

ρ (r, θ))

∣∣∣∣
λ=0

= 1

s!

∞∑
k=0

∂sλk

∂λs

∣∣∣∣
λ=0

G|k〉
ρ (r, θ) = G|s〉

ρ (r, θ), (4)

since ∂sλk

∂λs

∣∣
λ=0 = s!δsk .

These of course give us, at least in principle, the possibility of constructing either of the
distributions from the other. In a recent paper [15], rigorous proofs for two reconstruction
formulae for the λ-distributions were given. In view of this, the knowledge of all of the
distributions G|s〉

ρ , s ∈ N, allows state reconstruction via a detour.

4.1. Measuring the displaced photon distributions

We will now review the possibility of measuring the G|s〉-distributions with an eight-port
homodyne detection scheme. For a basic reference concerning the setup, see e.g. [17]. In
[14] a rigorous proof was given for the fact that with this scheme, any covariant phase space
observable can be obtained as a high amplitude limit. The detector consists of two pairs of
photon detectors and the amplitude-scaled photon differences D1 and D2 are measured. Four
input modes are involved: the signal mode, a vacuum mode, a local oscillator in a coherent
state and a parameter mode which defines the observable to be measured. If the parameter
mode is in a state S, then the phase space observable ECSC−1

, where C is the conjugation map
ψ 	→ (x 	→ ψ(x)), can be obtained as the high amplitude limit (see [14]).

The first obvious way to measure the G|s〉-distributions is the direct measurement in the
sense of the above limit. However, this requires ideal detectors, and the parameter field needs
to be prepared in a number state |s〉〈s|. The preparation of the number state is highly nontrivial
and is by itself an active area of research. Several theoretical models, mostly in the context of
cavity quantum electrodynamics, for the preparation of an arbitrary number state have been
proposed (see e.g. [4–6, 12]). Even though this gives a theoretical method for measuring the
distributions, it is not a practical one since the preparation procedures work only for small
photon numbers. To avoid the problem of number state preparation, we consider an alternative
point of view.

7
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Consider the measurement of the Q-function of the electromagnetic field by means of the
above experimental setup. In this case the parameter field is in the vacuum state |0〉〈0|. If the
detectors are nonideal, with a detection efficiency η each, the measured distribution is actually
the λ-parameterized distribution, with λ = 1 − η [10, 18]. Suppose now that the detector
efficiencies are close to unity, that is λ ≈ 0. Then, by adding suitable beam-splitters into the
measurement scheme, one is able to measure the distributions corresponding to the parameter
λ′, for which λ′ � λ. An equivalent scheme would be one where the detector efficiencies
could be adjusted. Proceeding in this manner, one obtains a function λ′ 	→ Wλ′

ρ . In an ideal
situation where η = 1 one could thus differentiate this s times with respect to λ′, and obtain
the G|s〉-distribution according to equation (4). Even in the nonideal case, one can obtain some
kind of an approximation for the G|s〉-distributions, provided that the λ-dependence of Wλ

ρ is
regular enough to allow an extrapolation to the values close to the origin.

We wish to point out that in addition to direct measurements, the displaced photon
number distributions can also be reconstructed from the measurement statistics of simple
on/off measurements [27]. In fact, this iterative technique has been successively used in an
experimental situation [3].

4.2. Reconstruction from the set {G|s〉
ρ |s ∈ N} of distributions

If one has knowledge of all of the distribution G|s〉
ρ , s ∈ N, recovering the diagonal elements

of the density matrix is a trivial task. Indeed, by definition one has

G|s〉
ρ (0) = tr[ρD(0)|s〉〈s|D(0)∗] = 〈s|ρ|s〉 = ρss,

suggesting that in order to reconstruct the diagonal elements of the state matrix, one needs
to measure the observable E|s〉 around the origin for all s ∈ N. The reconstruction of the
off-diagonal elements is a more complicated matter.

Let l ∈ N, l � 1, so that

G
|s〉
ρ,l(r) =

∞∑
n=0

ρn+l,nf
s
n,n+l (r),

where the functions f s
n,n+l were defined in equation (3). Define a function gl : (0,∞) → C

via gl(r) = er2
r−l . Suppose that l � s. Then the limit T l

sn := limr→0(glf
s
n,n+l )(r) exists,

because |s − n| + |s − (n + l)| � l for any n ∈ N, s � l, and can easily be computed using the
fact that Lα

m(0) = (
m+α

m

)
; the result is

T l
sn =

⎧⎪⎨
⎪⎩

0, n < s − l;
(−1)s−n

√
(n+l)!

n!
1

(s−n)!(n+l−s)! , s − l � n � s;
0, n > s.

In addition, assuming n � s and r ∈ (0, 1), and using the fact that |Ln−s
s (r2)| �

(
n

s

)
e

1
2 r2

[1, p 786, 22.14.12] we get

|gl(r)f
s
n,n+l (r)| � e

s!

√
ns

(n − s)!

(n + l)s

(n + l − s)!
,

which goes to zero, as n → ∞. This implies that supn∈N,r∈(0,1) |gl(r)f
s
n,n+l (r)| < ∞. Since∑∞

n=0 |ρn+l,n| � 1, it follows that the series
∑∞

n=0 ρn+l,ngl(r)fn,n+l (r) converges absolutely
and uniformly on the interval (0, 1). Thus, the limit

lim
r→0

gl(r)G
|s〉
ρ,l(r) = lim

r→0

∞∑
n=0

ρn+l,ngl(r)f
s
n,n+l (r)

8



J. Phys. A: Math. Theor. 43 (2010) 095303 J Kiukas et al

may be taken termwise. This gives us the infinite matrix identity

dl
s := lim

r→0
gl(r)G

|s〉
ρ,l(r) =

∞∑
n=0

T l
snρn+l,n,

which, in this case, holds for all states ρ. Inserting the explicit form of T l
sn we obtain

dl
s =

s∑
n=s−l

(−1)s−n

√
(n + l)!

n!

1

(s − n)!(n + l − s)!
ρn+l,n

=
s+l∑

n′=s

(−1)s+l−n′

√
n′!

(n′ − l)!

1

(s + l − n′)!(n′ − s)!
ρn′,n′−l . (5)

Defining cl
n := (−1)l

l!

√
n!

(n−l)!ρn,n−l for n � l and cl
n = 0 otherwise, and al

sn :=
(−1)n−s

(
l

n−s

)
, we can write equation (5) as

dl
s =

∞∑
n=0

al
snc

l
n,

since s � l. The infinite matrix
(
al

sn

)
s,n∈N

is now of the type considered in lemma 3 with

al
u = (−1)u

(
l

u

)
. Consider now the sequence

(
bl

u

)
u∈N

with bl
u = (

u+l−1
l−1

)
, and the infinite matrix(

bl
ns

)
n,s∈N

, bl
ns = bl

s−n. This is an upper-triangular matrix, and we have

∞∑
n=0

al
snb

l
ns =

∞∑
s=0

bl
nsa

l
sn = al

nnb
l
nn =

(
l

0

)(
l − 1

l − 1

)
= 1.

To calculate the off-diagonal elements of the product matrices, let k � 1. Using formula (5)
on page 8 of [26], we find that

∞∑
n=0

al
snb

l
n,s+k =

∞∑
n=s

(−1)n−s

(
l

n − s

)(
s + k − n + l − 1

l − 1

)

=
∞∑

n′=0

(−1)n
′
(

l

n′

)(
k − n′ + l − 1

k − n′

)
=

(
k − 1

k

)
= 0.

For the other case we use formula (5d) on page 10 of [26] to obtain

∞∑
s=0

bl
nsa

l
s,n+k =

∞∑
s=n

(−1)n+k−s

(
l

n + k − s

)(
s − n + l − 1

l − 1

)

=
∞∑

s ′=0

(−1)k+s ′
(

l

l − k + s ′

)(
s ′ + l − 1

s ′

)
= (−1)l+1−k

(
k − 1

k

)
= 0.

Since the lower diagonal elements of the product matrices are zero by definition, we find that(
al

sn

)
s,n∈N

and
(
bl

ns

)
n,s∈N

are formal inverses of each other.
Suppose now that

lim
m→∞ m

3
2 l−1ρm,m−l = 0 (6)

for all l ∈ N. Then the limit condition of lemma 3 is satisfied for each n ∈ N, since

9
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∣∣bl
m−kc

l
m

∣∣ = 1

l!

√
m!

(m − l)!

(m + l − k − 1)!

(l − 1)!(m − k)!
|ρm,m−l |

� 1

l!(l − 1)!
m

l
2 (m + l − k − 1)l−1|ρm,m−l |

� 2l−1m
3
2 l−1|ρm,m−l |

for m � l. Under this condition, we then have the convergence

cl
n =

∞∑
s=0

bl
nsd

l
s =

∞∑
s=n

bl
nsd

l
s,

or equivalently

cl
n+l =

∞∑
s=n+l

bl
n+l,sd

l
s ,

which gives us the reconstruction formula

ρn+l,n = (−1)l l!

√
n!

(n + l)!

∞∑
s=n+l

(
s − n − 1

l − 1

)
dl

s, (7)

where dl
s is related to the measurement statistics G|s〉

ρ by the formula

dl
s = 1

2π
lim
r→0

er2

rl

∫ 2π

0
eilθG|s〉

ρ (r, θ) dθ.

In principle, one can calculate these quantities from the measured probability density function
G|s〉

ρ .
The intuitive idea for the calculations is the following. For a fixed (small) r, sample

the values of the measured density function for sufficiently many values of θ in order to
numerically calculate the integral in the above expression, and multiply the result by er2

r−l .
Then reduce the value of r and repeat the procedure. Proceeding in this way, one should be
able to obtain a convergent sequence, which allows the determination of the quantities dl

s .
We wish to point out that if one has the analytic form of the density function G|s〉

ρ , then the
limit always exists. However, it is not clear how this is affected when errors caused by e.g.
measurement noise and numerics are taken into account.

An obvious disadvantage of this scenario is that the reconstruction requires measurements
of all of the observables E|s〉. From the practical point of view, this is of course impossible for
many reasons. In particular, in the eight-port homodyne detection scheme, for the measurement
of E|s〉, a parameter field needs to be prepared in the number state |s〉〈s|. At the present, this is
possible only for small values of s. Nevertheless, it might be reasonable to expect that future
progress could allow sufficiently large number state preparations, so that the reconstruction
would be possible with adequate precision.

Remark 1. Note that condition (6) for a given l ∈ N is a sufficient condition for the
reconstruction of the lth diagonal of the density matrix. For l = 0, for example, the
reconstruction formula works for all states ρ. Condition (6) is nontrivial in the sense that
there clearly exist states which do not satisfy it. For example, consider the vector state
ψ = π√

6

∑∞
n=1

1
n
|n〉, in which case (6) is obviously not true for l � 2. It is easy to check that

even the weaker sufficient condition, namely the limit condition of lemma 3, is unsatisfied.
However, since these conditions are not necessary, it is not clear whether equation (7) still
holds.

10
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4.3. Reconstruction from a single distribution

If we want to use a single distribution G|s〉
ρ , the reconstruction formula becomes more

complicated, and we were not able to satisfactorily solve the convergence issues in the case
of an infinite density matrix. Consequently, we will assume in what follows that the matrix is
finite. This corresponds to the discussion of section 3 concerning finite sequences.

The reconstruction makes use of the connection to the λ-parameterized distributions Wλ
ρ .

It follows from equation (4), that

G
|s〉
ρ,l(r, θ) = 1

s!

∂s

∂λs

(
(1 − λ)−1Wλ

ρ,l(r, θ)
)∣∣∣∣

λ=0

for all l ∈ N. On the other hand, we have for all states ρ and l ∈ N

Wλ
ρ,l(r) := 1

2π

∫ 2π

0
eilθ tr[ρWλ(r, θ)] dθ =

∞∑
n=0

ρn+l,nK
λ
n,n+l (r),

where

Kλ
n,n+l (r) = (1 − λ)

∞∑
k=0

λk〈n|D(r)|k〉〈k|D(r)∗|n + l〉.

This series can again be differentiated termwise, and we get

G
|s〉
ρ,l(r, θ) =

∞∑
n=0

ρn+l,n

1

s!

∂s

∂λs

(
(1 − λ)−1Kλ

n,n+l (r)
)∣∣∣∣

λ=0

.

The explicit form of the functions Kn,n+l is given by the formula of Cahill and Glauber [8]:

Kλ
n,n+l (r) =

√
n!

(n + l)!
(1 − λ)l+1 e−(1−λ)r2

rlλnLl
n((2 − λ − λ−1)r2)

=
√

n!(n + l)!
n∑

u=0

(1 − λ)2u+l+1λn−ur2u+l

(n − u)!(l + u)!u!
e−(1−λ)r2

.

Before proceeding any further, we prove the following lemma.

Lemma 4. Let k, p, q, s ∈ N and x ∈ R.

(a)

1

k!

dk(1 − λ)pλq

dλk

∣∣∣∣
λ=0

= (−1)k+q

(
p

k − q

)
,

which is 0 if and only if k < q or k > p + q.
(b)

1

s!

ds(1 − λ)pλq eλx

dλs

∣∣∣∣
λ=0

=
min{s,p+q}∑

k=q

(−1)k+q

(s − k)!

(
p

k − q

)
xs−k,

which is 0 for all x if and only if s < q.

Proof. By direct calculation we get

dk(1 − λ)pλq

dλk

∣∣∣∣
λ=0

=
k∑

t=0

(
k

t

)
dt λq

dλt

∣∣∣∣
λ=0︸ ︷︷ ︸

=q!δq,t

dk−t (1 − λ)p

dλk−t

∣∣∣∣
λ=0

11
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from which (a) follows. Part (b) follows from (a) and the calculation

1

s!

ds(1 − λ)pλq eλx

dλs

∣∣∣∣
λ=0

= 1

s!

s∑
k=0

(
s

k

)
dk(1 − λ)pλq

dλk

∣∣∣∣
λ=0

ds−keλx

dλs−k

∣∣∣∣
λ=0

=
s∑

k=0

(−1)k+q

(s − k)!

(
p

k − q

)
xs−k.

�

Now fix s ∈ N and denote x = r2. We have two different cases depending on whether l
is even or odd. We will start with the even case.

The even case. Suppose that l = 2h for some h ∈ N. Then, by lemma 4 we obtain

1

s!

∂s

∂λs

(
(1 − λ)−1Kλ

n,n+2h(
√

x)
)∣∣∣

λ=0
= e−x

√
n!(n + 2h)!

n∑
u=max{0,n−s}

1

u!(n − u)!(u + 2h)!

×
min{s,u+2h+n}∑

k=n−u

(−1)k+n−u

(s − k)!

(
2(u + h)

k − (n − u)

)
xu+h+s−k.

For any t ∈ N, define

Hs
2h(t, n) := ∂t

∂xt

ex

s!

∂s

∂λs

(
(1 − λ)−1Kλ

n,n+2h(
√

x)
)|λ=0|x=0

so that

∂t

∂xt
exG

|s〉
ρ,2h(

√
x)|x=0 =

∞∑
n=0

ρn+2h,nH
s
2h(t, n).

Now

Hs
2h(t, n) =

n∑
u=max{0,n−s}

√
n!(n + 2h)!

u!(n − u)!(u + 2h)!

×
min{s,u+2h+n}∑

k=n−u

(−1)k+n−u

(s − k)!

(
2(u + h)

k − (n − u)

)
∂txu+h+s−k

∂xt

∣∣∣
x=0︸ ︷︷ ︸

= t!δt,u+h+s−k

=
n∑

u=max{0,n−s}

t!
√

n!(n + 2h)!

u!(n − u)!(u + 2h)!

(−1)s+h+t+n

(t − h − u)!

(
2(u + h)

h + s − t − n + 2u

)

= t!
√

n!(n + 2h)!(−1)s+h+t+n

(h + t + n − s)!︸ ︷︷ ︸
= 0 iff h+t+n−s<0

×
∑min{n,t−h}

u=max{0,n−s}
1

(n − u)!(u − n + s)!

(
2(u + h)

u

)(
s − n + u

t − h − u

)
︸ ︷︷ ︸

= 0 iff t−h<0 or t−h<n−s or n<t−h−s

.

Since Hs
2h(t, n) = 0 if t < h we next assume that t � h and get

∂t

∂xt
exG

|s〉
ρ,2h(

√
x)

∣∣
x=0 =

s−h+t∑
n=max{0,s−h−t,t−h−s}

Hs
2h(t, n)ρn+2h,n. (8)

12
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Let t � s + h and denote p = t − s − h. We have

∂p+s+h

∂xp+s+h
exG

|s〉
ρ,2h(

√
x)

∣∣∣
x=0

=
2s+p∑
n=p

Hs
2h(p + s + h, n)ρn+2h,n.

Define an upper-triangular matrix
(
As,2h

pn

)
p,n∈N

by

As,2h
pn := Hs

2h(p + s + h, n), n � p.

According to corollary 1, it has an inverse matrix(
Bs,2h

np

)
n,p∈N

.

Using this, we get the state reconstruction formula

ρn+2h,n =
∞∑

p=0

Bs,2h
np

∂p+s+h

∂xp+s+h
exG

|s〉
ρ,2h(

√
x)

∣∣∣
x=0

. (9)

The odd case. If l is odd, that is, l = 2h + 1 we get

1

s!

∂s

∂λs

(
(1 − λ)−1Kλ

n,n+2h+1(
√

x)
)∣∣∣

λ=0
= √

x e−x
√

n!(n + 2h + 1)!

×
n∑

u=max{0,n−s}

1

u!(n − u)!(u + 2h + 1)!

×
min{s,u+2h+1+n}∑

k=n−u

(−1)k+n−u

(s − k)!

(
2(u + h) + 1

k − (n − u)

)
xu+h+s−k.

For all t ∈ N, define

Hs
2h+1(t, n) := ∂t

∂xt

√
x ex

s!

∂s

∂λs

(
(1 − λ)−1Kλ

n,n+2h+1(
√

x)
)|λ=0|x=0

and calculate

Hs
2h+1(t, n) = t!

√
n!(n + 2h + 1)!(−1)s+h+t+n+1

(h + t + n − s)!︸ ︷︷ ︸
= 0 iff h+t+n−s<0

×
min{n,t−h−1}∑
u=max{0,n−s}

1

(n − u)!(u − n + s)!

(
2(u + h) + 1

u

)(
s − n + u

t − h − u − 1

)
︸ ︷︷ ︸

= 0 iff t−h−1<0 or t−h−1<n−s or n<t−h−s−1

.

Since Hs
2h+1(t, n) = 0 if t < h + 1 we next assume that t � h + 1 and get the infinite matrix

identity

∂t

∂xt

√
x exG

|s〉
ρ,2h+1(

√
x)

∣∣∣
x=0

=
s−h+t−1∑

n=max{0,s−h−t,t−h−s−1}
Hs

2h+1(t, n)ρn+2h+1,n. (10)

Similar to the even case, assume t � s + h + 1 and denote p = t − s − h − 1 to get

∂p+s+h+1

∂xp+s+h+1

√
x exG

|s〉
ρ,2h+1(

√
x)

∣∣∣
x=0

=
2s+p∑
n=p

Hs
2h+1(p + s + h + 1, n)ρn+2h+1,n.

13
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Let
(
Bs,2h+1

np

)
n,p∈N

be the inverse of an upper-triangular matrix
(
As,2h+1

pn

)
p,n∈N

with

As,2h+1
pn := Hs

2h+1(p + s + h + 1, n), n � p.

Thus, we get the formula

ρn+2h+1,n =
∞∑

p=0

Bs,2h+1
np

∂p+s+h+1

∂xp+s+h+1

√
x exG

|s〉
ρ,2h+1(

√
x)

∣∣
x=0. (11)

Note that in the derivations of equations (9) and (11) we assumed that the density matrix
is finite. This assumption was needed for the inversion of the infinite matrix relations. In
particular, all of the series in the equations are actually reduced to finite sums. A similar
requirement of finiteness has also appeared in previous works concerning state reconstruction
from the Q-function, that is, the case s = 0 [23, 24]. However, since the observable E|0〉 is
known to be informationally complete, this requirement is a consequence of the used method
rather than having some deeper significance. In fact, a reconstruction formula which is valid
for any state is known for the Q-function (see e.g. equation (28) of [15]). We also wish to
point out that from our point of view the requirement of finiteness is only a sufficient global
assumption since it may happen that in some specific cases the relations can be inverted for an
arbitrary state. In any case, since the state can be approximated by a finite matrix, one might
expect that at least some reasonable approximation for the density matrix can be obtained
without any assumptions or a priori information on the state.

In fact, these considerations suggest an idea for the practical realization of this
reconstruction method. Suppose that one measures the observable E|s〉 for some s. The
resulting phase space probability density can then be integrated with respect to θ over [0, 2π)

for several different values of r to obtain a sample of the quantity G
|s〉
ρ,0. For an N × N matrix,

er2
G

|s〉
ρ,0(r) is known to be a polynomial of order 2N + 2s − 2. Choosing a sufficiently large

N ∈ N, one can fit such a polynomial into the computed values of er2
G

|s〉
ρ,0(r). The chosen

value of N then also fixes the size of the approximate density matrix, which then has the
consequence that the inverses of only N finite matrices are needed. Similarly, the quantities
G

|s〉
ρ,l are needed only for l = 0, . . . , N − 1.

Example 1. As an illustrative example, we consider the observable E|1〉 generated by
the first number state |1〉〈1|, and the system in the Schrödinger cat state ρ = |ϕ〉〈ϕ|, with
ϕ = 1√

2
(|0〉 + i|1〉). The quantities G

|1〉
ρ,l are now easily obtained:

G
|1〉
ρ,l(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
(r4 − r2 + 1), when l = 0,

i

2
(r3 − r), when l = 1,

0, otherwise.

In view of the reconstruction formulae (9) and (11), this directly implies that we have ρn,n+l = 0
for l � 2. The nonzero derivatives needed for the formulae are now

∂

∂x
exG

|1〉
ρ,0(

√
x)

∣∣∣∣
x=0

= −1

2
,

∂2

∂x2
exG

|1〉
ρ,0(

√
x)

∣∣∣∣
x=0

= 1,
∂2

∂x2

√
x exG

|1〉
ρ,1(

√
x)

∣∣∣∣
x=0

= i,

so that the formulae for the nonzero matrix elements may be written simply as

ρnn = − 1
2B

1,0
n0 + B

1,0
n1 ρn+1,n = iB1,1

n0 .

14
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To obtain the matrix elements B1,0
np and B1,1

np , we first calculate the matrices
(
A1,0

pn

)
p,n∈N

and
(
A1,1

pn

)
p,n∈N

. It follows from elementary calculations that

A1,0
pp = p + 1, A

1,0
p,p+1 = −(2p + 2), A

1,0
p,p+2 = p + 2,

and A1,0
pn = 0 otherwise, and

A1,1
pp = (p + 2)

√
p + 1, A

1,1
p,p+1 = −(2p + 3)

√
p + 2), A

1,1
p,p+2 = (p + 2)

√
p + 3,

and A1,1
pn = 0 otherwise. In matrix form, this reads

(
A1,0

pn

) =

⎛
⎜⎜⎜⎜⎜⎝

1 −2 2 0 · · ·
0 2 −4 3 · · ·
0 0 3 −6 · · ·
0 0 0 4 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

(
A1,1

pn

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −3
√

2 2
√

3 0 · · ·
0 3

√
2 −5

√
3 6 · · ·

0 0 4
√

3 −14 · · ·
0 0 0 10 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ .

The inverse matrices can now be calculated, and we obtain

(
B1,0

np

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2
3

1
4 · · ·

0 1
2

2
3

5
8 · · ·

0 0 1
3

1
2 · · ·

0 0 0 1
4 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(
B1,1

np

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2

3
8

9
40 · · ·

0 1
3
√

2
5

12
√

2
23

60
√

2
· · ·

0 0 1
4
√

3
7

20
√

3
· · ·

0 0 0 1
10 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Inserting the proper matrix elements into the equations we find that

ρ00 = 1

2
, ρ10 = ρ01 = i

2
, ρ11 = 1

2
,

and ρmn = 0 otherwise. Thus, the formulae do indeed give correct values for the matrix
elements.
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Appendix.

Proof of lemma 2. First note that for n < m we have trivially (AB)mn = 0 = (BA)mn since
they involve empty sums. The case of the diagonal elements is also clear since for example
(AB)mm = ammbmm = 1. Suppose now that n = m + l, where l > 0. Define the matrices
Ã := (aij )

m+l
i,j=0 and B̃ := (bij )

m+l
i,j=0 as finite cut-offs of the corresponding infinite matrices.

Now

(AB)m,m+l =
m+l∑
k=m

amkbk,m+l = (ÃB̃)m,m+l ,
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so it is sufficient to prove the claim for finite matrices. Clearly

B̃ =
m+l∑
k=0

(I − Ã)k,

since (I − Ã)k = 0 when k � m + l + 1. Thus,

ÃB̃ = (I − (I − Ã))B̃ =
m+l∑
k=0

(I − Ã)k −
m+l−1∑
k=0

(I − Ã)k+1

=
m+l∑
k=0

(I − Ã)k −
m+l∑
k=0

(I − Ã)k + I = I,

and hence

(AB)m,m+l = (ÃB̃)m,m+l = 0

for all m ∈ N and l > 0. In a similar way one proves that (BA)m,m+l = 0 for all m ∈ N,
l > 0. �

Proof of corollary 1. First note that the problem again reduces to the case of finite matrices.
Now UA and AU are upper-triangular matrices with unit diagonals, so taking suitable cut-offs
of these, the claim follows from elementary calculations. �

Proof of lemma 3. To prove (a), we are going to show that the matrix elements bn,n+k , n, k ∈
N, do not depend on n. According to corollary 1, we have bn,n+k = 1

a0

∑∞
u=0[(I − UA)u]n,n+k

for k � 0, and bns = 0 otherwise. First note that bnn = 1
a0

for all n ∈ N. Suppose now that

k � 1. Since in this case we have simply UA = 1
a0

A, we get (I − UA)ns = − as−n

a0
for s > n,

and (I − UA)ns = 0 otherwise. A direct calculation now gives us

[(I − UA)u]n,n+k =
∞∑

t1=n+1

∞∑
t2=t1+1

· · ·
∞∑

tu−1=tu−2+1

(I − UA)nt1(I − UA)t1t2 · · · (I − UA)tu−1,n+k

=
(

− 1

a0

)u n+u∑
t1=n+1

t1+u∑
t2=t1+1

· · ·
tu−2+u∑

tu−1=tu−2+1

at1−nat2−t1 · · · an+k−tu−1

for u � 1. After suitable changes in the summation indices, we obtain

bn,n+k = 1

a0
+

k∑
u=0

(
− 1

a0

)u n+u∑
t1=n+1

t1+u∑
t2=t1+1

· · ·
tu−2+u∑

tu−1=tu−2+1

at1−nat2−t1 · · · an+k−tu−1

= 1

a0
+

k∑
u=0

(
− 1

a0

)u u∑
t1=1

t1+u∑
t2=t1+1

· · ·
tu−2+u∑

tu−1=tu−2+1

at1at2−t1 · · · ak−tu−1 ,

which goes to show that bn,n+k does not depend on n. Consequently, the sequence (bl)l∈N,
bl = b0l is of the desired form. In addition, it is clearly unique.

To prove (b), we first deal with the case n = 0. Consider the partial sum Sk := ∑k
s=0 b0sds ,

for k � l − 1. (Recall the assumption l � 1.) We put in the expression

ds =
∞∑

n′=0

asn′cn′ =
s+l∑

n′=s

asn′cn′ =
k+l∑

n′=0

asn′cn′ , k � s,
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to get

Sk =
k∑

s=0

b0s

k+l∑
n′=0

asn′cn′ =
k+l∑

n′=0

(
k∑

s=0

b0sasn′

)
cn′ .

According to (a), the sum in parenthesis equals δ0n′ , provided that the summation covers the
full range of nonzero asn′ :s. This happens exactly when k � n′. Thus, we get

Sk = c0 +
k+l∑

n′=k+1

(
k∑

s=0

b0sasn′

)
cn′ = c0 +

k+l∑
n′=k+1

(
k∑

s=n′−l

bsan′−s

)
cn′

= c0 +
l∑

n′=1

(
k∑

s=n′+k−l

bsan′+k−s

)
cn′+k = c0 +

l∑
n′=1

(
l∑

s=n′
bn′+k−sas

)
cn′+k

where the third equality is obtained by substituting n′ 	→ n′ +k in the outer sum, and the fourth
equality by substituting s 	→ n′ + k − s in the inner sum. Suppose now that the limit condition
holds for n = 0. Then

0 = lim
k→∞

l∑
n′=1

(
l∑

s=n′
bk−sas

)
ck = lim

k→∞

l∑
n′=1

(
l∑

s=n′
bn′+k−sas

)
cn′+k

proving that limk→∞ Sk = c0.
Now fix n ∈ N and define a translated sequence c̃n′ = cn′+n, n′ ∈ N, with

d̃s :=
∞∑

n′=0

asn′ c̃n′ =
s+l∑

n′=s

an′−scn+n′ =
s+n+l∑

n′=s+n

an′−(s+n)cn′ = ds+n, s ∈ N.

Hence, we have the convergence

cn =
∞∑

s=0

bnsds =
∞∑

s=n

bnsds =
∞∑

s=0

bn,s+nds+n =
∞∑

s=0

b0sds+n

exactly when

c̃0 =
∞∑

s=0

b0s d̃s ,

which, according to the result just obtained, happens if and only if limm→∞ akbm−kc̃m = 0,
k = 1, . . . , l. But this is equivalent to the claimed limit condition, and the proof is complete.

�

Remark 2.

(a) According to the proof, a necessary and sufficient condition for the convergence of the
series cn = ∑∞

s=0 bnsds is that the remainder

Rn
k :=

l∑
n′=1

l∑
s=n′

bn′+k−sascn′+n+k

goes to zero in the limit k → ∞. This is not equivalent to the limit condition of lemma 3
in general.

(b) The limit condition of lemma 3 cannot be relaxed. Indeed, at least in the case l = 1,
it is also necessary for the convergence of the series, if we assume a1 �= 0. This is
apparent, since the remainder term Rn

k contains only one term then. Another example
is given by l = 2, a1 = 0 and a2 �= 0. In this case, b2s = (− a2

a0

)s 1
a0

, and b2s+1 = 0.
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Hence, the remainder term is Rn
k = a2bk−1cn+k+1 for odd k, and Rn

k = a2bkcn+k+2 for even
k. Thus, the necessary and sufficient condition for the convergence for the cn series is
limk→∞ a2b2kc2k+n+2 = 0. This is just the same as the limit condition for all sequences
(cn)n∈N, since a1 = 0 implies that limk→∞ a1b2kc2k+n+1 = 0 trivially.
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[29] Welsch D-G, Vogel W and Opatrný T 1999 Homodyne detection and quantum state reconstruction Prog.

Opt. 39 63–211
[30] Werner R 1984 Quantum harmonic analysis on phase space J. Math. Phys. 25 1404–11

18

http://dx.doi.org/10.1103/PhysRevA.80.022114
http://dx.doi.org/10.1103/PhysRevLett.86.3534
http://dx.doi.org/10.1103/PhysRevA.67.043818
http://www.arxiv.org/abs/0804.2684
http://dx.doi.org/10.1007/BF00731904
http://dx.doi.org/10.1103/PhysRev.177.1857
http://dx.doi.org/10.1103/PhysRev.177.1882
http://dx.doi.org/10.1016/0375-9601(95)00009-R
http://dx.doi.org/10.1103/PhysRevA.50.4298
http://dx.doi.org/10.1103/PhysRevLett.97.073601
http://dx.doi.org/10.1016/0034-4877(79)90072-7
http://dx.doi.org/10.1080/09500340701864718
http://www.arxiv.org/abs/0909.3416
http://dx.doi.org/10.1103/PhysRevA.52.4899
http://dx.doi.org/10.1103/PhysRevA.48.4598
http://dx.doi.org/10.1016/0030-4018(96)00061-2
http://dx.doi.org/10.1209/epl/i1997-00115-8
http://dx.doi.org/10.1023/A:1025876210639
http://dx.doi.org/10.1007/s10946-007-0006-7
http://dx.doi.org/10.1103/PhysRevA.53.2658
http://dx.doi.org/10.1016/0030-4018(96)00019-3
http://dx.doi.org/10.1007/BF01807146
http://dx.doi.org/10.1103/PhysRevA.70.055801
http://dx.doi.org/10.1103/PhysRevA.53.4528
http://dx.doi.org/10.1016/S0079-6638(08)70389-5
http://dx.doi.org/10.1063/1.526310

	1. Introduction
	2. Preliminaries
	3. Matrix inversion results
	4. Phase space observables generated by the number states
	4.1. Measuring the displaced photon distributions
	4.2. Reconstruction from the set {Gps |s| \epsiv N} of distributions
	4.3. Reconstruction from a single distribution

	Acknowledgments
	Appendix.
	References

